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Abstract

A topological quantumfield theory on a 4k-dimensionalmanifold M admitting an
almostquaternionicstructureis proposed.Expectationvaluesof certainoperatorson M
are proved to be independentof the choice of an almost quaternionicstructureused
in calculationsand thuscarry only smooth information aboutM. Theseinvariantsare
explicitly expressedas integralsof differential forms over the instantonmoduli space
associatedwith a chosenalmostquaternionicstructure.WhenM admits a hyperKähler
structurethetopologicalfield theoryhas threeadditionalsupersymmetrieswhich induce
threecomplex structureson the associatedinstantonmoduli spaceproving thus that
thelatter is a hypercomplexmanifold. In this casean analogueof the four-dimensional
Donaldsonmapis constructedwhich providesa numberof candidatesfor newinvariants
of 4k-dimensionalhypercomplexstructures.In the casek = 1 the proposedtopological
theoryon an almostquaternionicmanifold reproducestheWitten interpretationof the
four-dimensionalDonaldsoninvariants.
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1. Introduction

RecentlyWitten [25] proposeda quantumfield theory interpretationof the
famous Donaldsoninvariants for smoothfour-dimensionalmanifolds which
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appearto be extremelypowerful in distinguishingdifferent differentiablestruc-
tures.The main topic of this paperis to constructa generalizationof Witten’s
topological field theory to 4k dimensions,k > 1, and to use quantum field

theory techniquesfor constructingDonaldson-like (smooth) invariants of a
4k-dimensionalmanifold M admittingan almost quaternionicstructure.

In our approachan almost quaternionicstructureon M plays the samerOle
as a conformal structuredoes in the four-dimensionaltheoriesof Donaldson
and Witten. That is, we use an almost quaternionicstructure y on a 4k-
dimensionalmanifold solely as an auxiliary tool for introducingthe notion of
instantonson M and for expressingthe resultingsmooth invariantswith the
help of the associatedmoduli spaceM with the assurancethat the final results
do not dependon any particular choiceof y.

Though in the intermediateconsiderationswe use the mathematicallyill-
definedpath integral techniques,it is remarkablethat we arrive at a mathe-
matically rigorousand concreterecipe for computingthe map

H1(M
4kjfl —* H’(M,R), i =

from the de Rham cohomologyon M4k to the de Rhamcohomologyon M.
This map provides a higher dimensionalgeneralizationof the well-known
Donaldsonmap and is one of the central results of the paper. In the case
when the moduli spaceM is discretewe also succeedin constructinga 4k-
dimensionalanalogueof the first Donaldsoninvariant.

Another importanttopic in this paperis the investigationof the topological
field theory on a manifold admitting a hyperKählerstructure.We construct
a specific topological quantum field theory on an arbitrary 4k-dimensional
hyperKählerbackgroundand prove that in addition to the Witten-type su-

persymmetrythis theory has a two-parameterfamily of new supersymmetries
associatedwith the two-parameterfamily of complex structureson M41~.We
use the path integral techniqueto prove that the moduli spaceM on a hy-
perKãhlermanifold M4k has a naturalhypercomplexstructure,and for each
choiceof a complexstructureon M4k thereis a map

Hr,s (p4k) ~ (M), r, s = 1,. . . , 2k,

relating the Dolbeault cohomology on M4k with the Dolbeault cohomology

on M. Again the recipefor calculatingthe Dolbeault cohomologyclasson M
correspondingto any given Dolbeault cohomologyclass on M41~is concrete
and rigorous.This part of the paperprovidesa generalizationto arbitrary4k
dimensionsof the results obtainedby Galperinand Ogievetsky [11] in the
four-dimensionalcase.

The paperis organisedas follows. In Section 2 we presenta slight modifica-
tion of Witten’s four-dimensionaltopological field theory.The key ideais that
the notion of self-dualityabsorbedby the topologicalfield theory throughsome
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fields of the multiplet can be definedwith the help of an arbitrary conformal
structure,not necessarilycoinciding with the equivalenceclass g Q2g of
the Riemannianmetric g which entersthe field theorymultiplet. The resulting
version of Witten’s field theory remainstopological in the sensethat vacuum
expectationvaluesof certainfunctionalsare independentof both the Rieman-
nianmetric g usedto definenormsandthe conformalstructureusedto define
self-dualityof Yang—Mills connections.

Another important observationmade in this section is that a conformal
structureon a four-dimensionalmanifold M can itself be defined in two
equivalentways. One approachis standardandconsistsof a specificationof
an equivalenceclass of conformally relatedRiemannianmetrics. The other
approachis to fix an isomorphism

CøQ’M ~ S®S

of thecomplexifiedcotangentbundle of M with a tensorproductof two rank-
two complexbundlesS and~ equippedwith a certainreal structure.However,
in higher dimensionsthesetwo ways to define a conformal structure, and
hencethe notion of self-duality, becomeinequivalent to each other. It is
the secondapproachto self-duality that survives in the categoryof almost
quaternionicmanifolds.In Section3 we developatopologicalfield theoryon an
arbitrary4k-dimensionalmanifold admittingan almostquaternionicstructure.
The possibility of decomposingthe bundleof two-forms on M independently
of the choiceof Riemannianmetricbecomescritically importantin dimensions
bigger than four. We find a specificclassof functionalson the functionspaceof
the topological field theorywhosevacuumexpectationvaluesareindependent
of both the choiceof almost quaternionicstructureon M4k and the choiceof
Riemannianmetric g used in calculations.The central resultsof this section
are the constructionof a generalizedDonaldsonmap relating the de Rham
cohomologyon M41< to the de Rham cohomologyon the moduli spaceM and
the calculationof the first Donaldson-likeinvariant.

In the final sectionwe investigatea version of the topological field theory
specially adapted to the case when the 4k-dimensional manifold M under
considerationadmits a hyperKählerstructure. We prove that the associated
moduli spaceM hasan inducedhypercomplexstructure,and for eachchoice
of acomplexstructureon M thereis a correspondingmap from the Dolbeault
cohomologyof M to the Dolbeault cohomologyof M. This map is used to
constructnew invariants of hypercomplexstructures.
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2. A comment on Witten’s topological field theory

2.1. Thelist offields andthe action

Let M be a four-dimensionalmanifoldequippedwith a Riemannianmetric g
anda principle G-bundle~ —* M for which the structuregroup G is a compact
Lie group. Let us specify a connectionV on ~ along with the collection of

bosonicand fermionic fields listed in the following table:

Bosonicfields Fermionicfields

~EF(M,adg) yJEF(M,Q’M®adg)
~EF(M,adg) ~eF(M,adg)
BEF(M,Q~M®adg) xEF(M,Q~M®adc)

HereQ~M denotesthe bundleof self-dualtwo-formson M. The actionof the
topological field theory on M, written in a local coordinatesystem { f : a =

l,2,3,4}, is given explicitly by [25]

~ =fL\/~dx4~ (1)

with the Lagrangian

L = Tr{—~BabB’th+ ~BabF~th— ~Vaq5V’~t+ iVaWbX~th—

— ~i~[~Ja, ~ + ~is~[i1,~] + ~s[çl,~] 2) (2)

wheretangentspaceindices (denotedby small Latin letters) are raisedwith

the help of the inversemetric tensor, va = gabv~etc. The symbol Fab (

8aAb — abAa + [Aa, Ab1) standsfor the componentof the curvaturetensorof
the connectionV in the chosencoordinatechart ands is an arbitrary real
constant.

The functional (1) is designedto be invariant under the odd operatorQ

acting in the field theory function spaceaccordingto the formulae [25,13]

QAa = ~Y1a, QWa = Va~, Qç5 = 0,

QBab = ~[~,XabI, QXab = Bab, Qt = 2ipj,

Q~ = ~ Qg~m= 0. (3)

The squareof this operatorQ2 is exactlythe infinitesimalgaugetransforma-
tion with the parameteriç5,

Q2Aa = ~ Q2Wa = j[~1Ia1, Q2Bab = i[c~,Bab],

Q22 = i[~,A], Q2Xab = i[q5,xab], Q~ =
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Therefore the operatorQ
2 restrictedto the subspaceof gaugeinvariant func-

tionals on the field theory function spacemaybe identified with zero,

gauge invariantfunctionals=

andwe mayintroduce the notion of Q-cohomologyclassesof gaugeinvariant
functionals. The property of the action (1) which plays a crucial rOle in
the quantumfield theory interpretationof Donaldson’sinvariants is that the
Lagrangian(2) is not just Q-closedbut alsoQ-exact,

L = QY,

where

V = Tr{~uaVaA+ ~si~i[ç~,A]— ~BabX~th+ ~FabX~~th}.

For constructingsmooth invariants it is also important to show that the
energy—momentum

Tab = ~ L ~ dx4

of the theory is Q-exact.This is indeedthe case,since,as one may checkusing
(3), the operatorsQ and ~5/~5gabcommutewith eachother,

Tab = Q~-~~fV~/~dx4.

It is the Q-exactnessof the energy—momentumtensorthat is responsiblefor
the fact that the vacuumexpectationvalue

(A) = f(VA)(D~)(DA)(VB)(D~)(D~)(Vx)

exp(_~s(~~V, ~, A, B, ~, t~,x)) A

of a Q-closedandmetric-independentfunctional A does not dependon the
choice of a metric g used in the calculationof (A) andcarries only smooth
informationabout the underlyingmanifold M (cf. 3.3). Witten [251 found
functionalsA which producethe Donaldsoninvariants [9] in this way.

In his original approachWitten [25] fixes the free parameters to be —1 and
provesthat in the flat case (M = tR4) the resulting theory coincidesexactly
with the twisted version of the usual N = 2 supersymmetricYang—Mills the-
ory in which the SU (2) automorphismgroup of N = 2 supersymmetrygets
identified with the SU(2)j. subgroupof the EuclideantangentgroupS0(4) ~

SU(2)L x
52 SU(2)R. Later Atiyah andJeffrey [3] found a beautiful interpre-

tation of the partition function (1) (the first Donaldsoninvariant) of Witten’s
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topologicalfield theory as the Euler numberof an infinite-dimensionalvector
bundle over the space of gauge equivalenceclassesof connections.More-
over, they succeededin reproducingWitten’s action (1) with s = 0 from the
infinite-dimensionalanalogueof the Mathai—Quillenform [17].

2.2. Self-dualityin four dimensions

Self-duality is absorbedby the topological field theory throughtwo fields, the
bosonicand, respectively,fermionic adg-valuedtwo-forms B andx. Usually
the decomposition

Q2M=Q~iMEI~Q~M, (4)

of the bundleof two-formsinto the direct sumof subbundlesof self-dualQ~M
and anti-self-dualQ~M two-forms is achievedwith the help of the Hodge
operator *. If a metric g is fixed on a manifold M then the Hodgeoperator
may be definedby the equation

(w
1,w2)vol= w1 A*w2 (5)

for anyw1,w2E Q’M, where (•,) andvol are, respectively,the scalarproduct
on the bundle of i-forms Q’M and the volume form on the manifold M
determinedby the fixed Riemannianstructureg.

The form of the definition of the Hodge operator given in (5) makes it
evidentthat in four-dimensionsthe operator * applied to two-forms depends
only on the conformalclass [g] ratherthan on the particularrepresentativeg
(multiplication of the metric g by Q

2 multiplies the scalar product of two-
formsby Q4 andthe volume form by .Q4). Thusit is aconformalratherthan
a Riemannianstructureon M that is involved in the decomposition(4).

Usually, a conformal structureon a four-dimensionalmanifoldM is defined
as an equivalenceclass [g] of (pseudo)Riemannianmetricson M under the
relation ,~ g if ,~ = Q2gfor some nowherevanishingfunction Q. Since the
Riemannianmetric g is a memberof the topological field theory multiplet,
it is natural to define the decomposition(4) in this frameworkwith the help
of the conformal structure[g] correspondingto g. It is this approachto the
definition of self-duality that is usedby Witten in his original work [25].

However,thereexistsanotherway to definea conformalstructureon a four-
dimensionalmanifold M. Supposethat the complexified cotangentbundle
of M factorsas the tensorproduct

(6)

whereS and~ aretwo complexrank-twobundles.This isomorphismspecifies
canonically the line subbundle A2S 0 A2S c QJ~M® Q~M,which in turn
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may be identified with the complexequivalenceclassof conformally related
metrics.A real structurep on S + ~ determinesthe signatureof the metrics
in the conformal class2.If p providesan antilinear isomorphismbetweenS
and5, i.e.

(5)P ~ ~, (S)P 5,

thenthe conformal structureA2S0 A2S hasthe Lorentziansignature.If p gives

quaternionicstructures

(5)PS ~ 5, Ps2 = —1, (5)P~~ ~, ~2 = —l

on S and~ then theinducedconformalstructureon M hasEuclideansignature.
Note that if M is analytic then it is possible to view p as an extensionof a
real structureon a complexifiedmanifold M whosefixed point set is M.

Since we are interestedin this paper in the case of Euclidean signature,
we assumefrom now on that vector bundles S and S are equippedwith

quaternionicstructures.Then the tensorproducts (®P5) 0 (®q
5) with p + q

evenintegerscome equippedwith a real structureand we adoptthe notation
that the symbol (®P5) 0 (®“S) with p + q even,thoughexpressedin termsof
complexvector bundles, standsfor the correspondingreal subbundleover the
realmanifold M.

Thus we concludethata Euclideansignatureconformal structureon a four-
dimensionalmanifold M can be given as an isomorphism

(7)

where S and .c~are rank 2 complex vector bundles over M equippedwith
fibrewisequaternionicstructures.

Once a conformal structureon M is specified by an isomorphism y, the
correspondingdecomposition(4) becomesvery transparent

Q
2M = Q~M + Q~M

A2(S®S) = A2S® (~®~)~ (S®S)oA2~

In general there is a topological obstruction,the second Stiefel—Whitney
classe C H1(M;Z

2), to the global existenceof vectorbundlesS andS on M.
However,boththe definitionof a conformalstructurethroughthefactoring (7)
andthe correspondingdecompositionof Q

2M into self-dualandanti-self-dual

2 Let us recall someterminology [15]. A real structureon a commutativeC-algebraA is a C-

antilinear isomorphismA —‘ A, a — a~with the properties:~ = a, (ab)P = aPb~and (csa)P =

~ for cs E C. An extensionof p to a real (respectively,quaternionic) structureon an A-
module M is a mappingM —. M,m —~ m~satisfying the conditions (am)P = ~ = m
(respectively,~ = —m).
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subbundles are invariant under the action of 12 on S x ~cand thus rely only
on the local existenceof S andS. This meansthat such an approachto the
definition of self-duality doesnot encounterany topologicalobstructionsand
is valid for arbitraryfour-dimensionalmanifolds.

2.3. A version of the topologicalfield theory in four dimensions

Supposethat in addition to the standardtopological field theory structure
an isomorphism y : Q’M —~ S o S is also specifiedon a four-dimensional
manifold M. Then we have to choosewhether to define the notion of self-
duality in terms of the conformal structure [g I associatedwith the fixed
Riemannianmetric g,or in terms of the decompositiony(Q2M) = A2S 0
(SoS)~ (505) OA2S associatedwith the isomorphismy. Thefirst approach
givesjust the original formulation of Witten [25], while the secondapproach

leads to a field theory with the action (1), (2) dependingimplicitly on y
through the fields B and x. Remarkablyenough, this new theory is also
topological in the sensethatexpectationvalues,

(A) = fDA (V~) (VA) (DB) (Dy) (Do) (DX)

x exp ~ W~~~X))A

of Q-closed and metric- and y-independent functionals A againdependneither
on the choice of metric g nor on the choice of isomorphismy used in the
path integral calculationsand thus encodepurely smooth information about
the underlying manifold M.

If the Riemannian metric g and the isomorphism y are bound to define
the same conformal structure on M, the new version of the topological field
theorybecomescompletelyequivalentto the original one [25]. Howeverthere
is nothing specific in such a choice and we are free to considerg and y

as completely independentstructures.Neverthelessthis produces the same
results as in Ref. [25]. This flexibility becomesextremely important when
one attemptsto generalizeWitten’s four-dimensionaltopological field theory
to higherdimensions.

3. Topological field theory on almost quaternionic manifolds

3.1. Almostquaternionicstructures

Let I-il denotethe division ring of quaternionsand HP” the 4k-dimensional
quaternionicprojectivespace.The latter maybe definedeitheras the quotient
(]~]k+1— {0})/l~]*, where ]~]* is the group of non-zero quaternionsacting by
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right multiplication, or as a real submanifold of a 4k-dimensionalcomplex
Grassmannian,Gr (2; C2~~+2) of two-planes in

02k +2 singled out by a real
structurep definedas follows. For q C H, wewrite q = a + bj, wherea, b C C
andI is a unit quaternion.This decompositionprovidesthe identification H ~
02 which canbe readily generalisedto k + 1 quaternionicdimensionsto obtain
the identification H”~ ‘~ 02k+2 Let

02k+2 (8)

be an antilinearautomorphisminducedby left multiplication by j. Then HP”
canbe identified with the subsetof M = Gr(2;C

21’~2)consistingof “real”, i.e.
p-fixed, complextwo-planesin

02k+2~ Such a realization of the quaternionic
projectivespacemakestransparentthe canonicalGL(k,H)Sp(l)-structureon
HP”, i.e. the reductionof the structuregroup GL(4k, l~)of the frame bundle
to GL(k,H)Sp(l). In fact, there is a natural tautological rank 2 complex
vector bundle 5~on M whose fibre over a point x C M is the two-plane in
02k+2 correspondingto x. The bundleS is obviouslya subbundleof the trivial
bundleC2~~+2x M, andanothernatural rank 2k + 2 vectorbundle5* over the
Grassmanniancanbe definedby an exact sequence

0~S~C
2~2xM~S* ~0.

The cotangentbundleto the GrassmannianM factorsas atensorproduct [15]

Q’M ~ SoS,

whereS is the dualof S*. The quaternionicprojectivespaceHP” cM inherits
this importantproperty

C ®~Q1HP~’= Q’M NP” ~ S®S ItJPk.

The real structure(8) inducesfibrewisequaternionicstructuresPS andp~
on complex vector bundlesS and~ restrictedto the submanifoldHPk C M.
Then the tensorproductS ® S I~ comes equippedwith the real structure
Ps ® pc which singlesout the cotangentbundleQ’ HP” as the corresponding
real subbundlein SoS. The subgroupof the structuregroup GL(2k,C) of
the complexbundleS o~IP”commutingwith PS is GL(k,H) while the subgroup
of the structuregroup GL(2,0) of the bundle~ I~p’~commutingwith p~is
GL(1, I-I). This meansthat the quaternionic projectivespaceinherits from the
pair (Gr(2;C4),p) aG-structurewith

G = GL(k,H)Sp(1) ~ GL(k,H) x~
2Sp(l).

Taking this canonical G-structureon HPk as a model, Salamon [23] in-
troducesa categoryof almost quaternionicmanifolds as real 4k-dimensional
manifolds admitting a G = GL(k,II-l)Sp(l)-structure. Locally, the reduced
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GL(k, H)Sp(1 )-subbundle F of the frame bundle on an almost quaternionic
manifold can be lifted to a principal GL(k,H) x Sp(l)-bundle ~ which
double covers F and this enables the construction of bundles associated to
representations W of GL(k,H) x Sp(l). Such a bundle is defined to be
F XGL(kN)xsp(I) W, where g C GL(k,]-]) x Sp(l) acts on atypical elementof
F x W via (f,w) . g = (f . g,g~ w). These bundles exist globally if either
F exists globally or (—1, —1) C GL(k,H) x Sp(l) acts as the identity.

There are two basic modulesweconsider:S is H~’with A . = — I for A C

GL(k, I-fl) and ~ C H”; and S is Hwith q•t~= q~,for q C Sp(1) and ~ C H. From
the realization of GL(k,]-fl)Sp(l) as a subgroup of GL(4k,IU, we have that the
complexified cotangent bundle, C®~Q M, of an almost quaternionic manifold
M factors as a tensor product S ®C ~‘. EachbundleS and S comes equipped
with natural fibrewisequaternionicstructuresinduced,by right multiplication
by a unit quaternionj, (çe)~= —~j,~ C He’, and (,j)P = jij. Then the tensor
product S ®C S admits the complex conjugation~®~ii = —~j®c jrj which
singlesout the cotangentbundleQ’ M as the correspondingreal subbundleof
S ®C S. It is clearthat all the tensorproducts(®P5) ® (®q

5) with p + q even
integerscomeequippedwith a real structureand, as in Section2, we adoptthe
notationthat the symbol (®P5) ® (®q~’) with p + q even, thoughexpressedin
termsof complexvector bundles,standsfor the correspondingreal subbundle
over the real manifold M.

Thus weconcludethatan almostquaternionicstructureon a 4k-dimensional
real manifoldM is just an isomorphism

(9)

where S and ~ are rank 2k and, respectively,rank 2 complexvectorbundles
over M equipped with fibrewise quaternionicstructures.For our purposes
the most important structurethis gives M is the splitting of the bundle of
two-forms

Q
2M = Q~M o Q~M

A2(S®S) = A2S®(S®S) o (S®S)®A2S

This providesa naturalgeneralizationof the notion of self-duality from four
to 4k dimensions.Note that when k > 2 this can not be interpreted as the
Hodgedecompositionassociatedwith a Riemannianmetric on M.

The definition of an almost quaternionicmanifold involves a reductionof
the structuregroup and this leadsto topologicalobstructionsto the existence
of such structures.In generaltheseobstructionsare not known, but in [12]
it was shown that Sn” does not admit an almost quaternionicstructureif
n > 1. Via the work of Adams [1] this may be deducedas a special caseof
a result of Marchiafava [16] which statesthat if M is a manifold such that
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H2(M,7L/2) = 0, H4(M,Z) = 0 andM doesnot admit an almost complex
structure,thenM can not admit an almost quaternionicstructure.

3.2. Theaction and observablesofthe topologicalfield theory

Let M be a compact 4k-dimensional manifold. A topological field theory
on M is defined by the following set of structures: (i) an almost quaternionic
structure y: Q’ M —~ S®~‘; (ii) Riemannian metric g; (iii) a principle G-bundle
g —p M equipped with a linear connection V; (iv) the collection of bosonic
and fermionic fields on M which is formally the sameas the onelisted in the
table of subsection 2. 1. At this point the constructionof the action and the
odd operator Q is formally identicalto the prescriptiongiven by Witten, see
Eqs. (1)— (3). Witten’s construction of observables can be generalised from 4
to 4k dimensions with the help of the following trick (cf. [6]). Consider the
section ~iF + ~‘ + ~ C r(M,adg ® AT’~M)of the Cartan algebra of the
ad c-valued differential forms on M, wherewe use a differential form notation
F = Fabdx” A dx”, y’ = Wadxa It is easy to check the identity

(d + Q)(~iF+ yt + ~) + [A,~iF + w + ~] = 0,

which implies

(d + Q)Tr(~iF + W + ~ = 0

for any positive number m. Let us take m = 2k (or any m ~ 2k) and

decomposethe trace

Tr(~iF+W+~)2k=~Aj (10)

into a sum of homogeneousi-forms A. In particular, A
0 = Tr(~

2”)and
A4k = Tr(F2”~).

By construction, the collection of differential forms A,, i = 0, 1,. . . , 4k
satisfiesthe equations

dA,=—QA,~
1, i=0,l,...,4k—l,

dA4k = 0.

To showthat thefunctionalsA = A,1AA,, A . AA,5 havenon-zeroexpectation
valuesfor some n is a more complicatedtask, since the calculationof (A~~A
A,, A ... A A,~)relies on propertiesof the solutionspaceof a very little-known
non-lineardifferentialequation.Indeed,since

c~(A)/ô(—l/e
2)= 0,

the expectationvalues (A) do not dependon the coupling constantandwe
may calculate them in the limit e —f 0. In this limit the path integral is
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dominatedby configurationson which the action is equalto zero. To describe
such configurations,note that the kinetic gaugefield terms in S are positive
semidefinite andvanishfor connectionssatisfying the equation

pr~jF) = 0, (11)

whereF is the curvaturetwo-form andpr~is the orthogonal (relativeto the
metric g) projectionfrom the spaceQ2M to its subspacey~(A2S ® (S® 5)).

Sincethe metric g is arbitrary, we can alwayschooseit in such a way that the
decomposition

Q2M = ~-‘ (A2S ® (~® ~))® y1 ((5®5) ® A25)

is orthogonal relative to g (e.g., g = y’ (c ® ~), where c and ~ are any
nowherevanishingsectionsof A25 and A2S respectively).ThenEq. (11) takes
the form

= 0, (12)

wherey~is given by the composition

y+:Q2M-~-~A2(S®~)-~ A2S®(S®S).

This equationstatesthat path integrals (A
11 A A1, A••~A A1~)are concentrated

on the superspacecontainingthe moduli spaceof instantons, that is to say
connectionsV whose curvature lies in y~((SoS) ® A

2S). FortunatelyEq.
(12) is not a completelyunknownone. In 3.3 and3.4 belowwe givea summary
of known propertiesof the moduli spacesof solutions of Eq. (12) and then
proceedfurtherwith the investigationof the proposedinvariantsof the type
(A

1 A A1, A ... A

3.3. QuaternionicKählerstructure

Startingwith the works by Mamone Capria and Salamon [14] andNitta
[18] a number of mathematicianshave paid attention to the structureof
moduli spacesof solutionsof Eq. (12) in the casewhenthe underlyingalmost
quaternionicmanifold M admits a quaternionicKähler metric. Let us recall
somebasicnotions [14]. Let M be a compact4k-dimensionalmanifold, k> 2,
equippedwith an almostquaternionicstructurey: Q’ M —~ SoS.A Riemannian
metric g on M is saidto be compatiblewith the almost quaternionicstructure
if it canbe representedin the form g = y~(e ® ~) for somesymplecticforms
c and ~ on S and ~ respectively.

A quaternionic Kähler structure [21,4] on M is an almost quaternionic
structurey togetherwith a compatiblemetric g = ~ (e ® ~) andconnections
V on S and~csuch that symplecticforms arehorizontal,

(13)
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and the inducedconnectionV on Q
1M is the Levi-Civita connectioncorre-

spondingto g. This is the sameas sayingthat a quaternionicKähler manifold is
a Riemannianmanifold whoseholonomygroup lies in Sp(k)Sp(1). Examples
of such manifolds areprovided by quaternionicprojective spacesHP”.

Let us consider the group g consisting of those automorphismsof the
bundle~‘ which preservethe symplecticform ~ andcommutewith the fibrewise
quaternionicstructurep:S —f ~. Fibrewise, the action of c can be viewedas
left multiplication by Sp (1). Using the natural inclusion

~ = EndS

one can identify the Lie algebra of Sp (1) with ~ ® ~. With this identification
the action of b.c’ ® on the tangentbundle TM ~ S~® 5* is given by the

composition

TM®(S®S)~~+S*®S*®S®S1d®~e®fS*®S*~ TM.

Moreover, if J,K C ® ~, then as endomorphismsof TM,

JK+KJ=—(J,K)id (14)

where ( , ) is the fibrewise scalarproduct inducedon 5 0 ~ by the symplectic
form ~.

Since fibrewise the Lie algebraof c acts on TM as the left multiplication
by an imaginary quaternionfrom sp(1), the bundle 5 0 ~ c EndTM has a
local (but not in general global) basis {I, J,K} of endomorphismssatisfying
the familiar identities

12=J2=K2=—l, IJ=—JI=K (15)

3.4. Moduli spacesofinstantons

A generaltheory for instantonson quaternionicKählermanifolds hasbeen
developedby Mamone-Capriaand Salamon [14] and by Nitta [18—201:Let
V be complex unitary vector bundleon the quaternionicKähler manifoldM
with a unitary connectionV. Then V is an instantonif its curvatureFv is
in y~((S®5) ® A2S® EndV). Such aconnectionis asolutionto the Yang—
Mills equations.The pull-back of the bundleto the twistor spaceZ of M is
a holomorphicbundle when V is an instanton. If the scalarcurvatureof M
is positive then Z is Kähler and the pulled back connectionis Hermitian-
Einstein. Indeed, the Atiyah—Ward correspondencehas been generalizedto
4k-dimensions118,22,5].

The structureof the correspondingmoduli-spaceturns out to be muchmore
complicatedthan in four-dimensions,wherethe moduli spaceis a manifold
for generic metrics and the dimension is known [10,2]. However, recently
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someprogresshas beenmadeusing results from algebraicgeometryon null
correlationbundles120,7,8]:considerthe homogeneousvectorbundleS on the
symmetricspaceHP”. Instantonson S are called one-instantons.The unique
irreducibleconnectionV on S is an instantonandis called thestandardone-
instanton.The actionof SL(k + 1,H) on HP” preservesthe SL(k,H)Sp(l)
structureso g*V is an instantonon the bundle g*5~Using a Sp(k)-bundle
isomorphismg*5 21÷S we obtain a 1-instantong*V on S which is unique
up to Sp(k)-gaugetransformationson S. Then the moduli spaceMk of 1-
instantonson HP” is identified with the k(2k + 3)-dimensionalhomogeneous
spaceSL(k + 1,H)/Sp(k + l,H) via the correspondenceg —~ g*V. Further-
more, Mk has a natural compactificationM~.Thus good moduli spacesdo
exist also fork > 1.

ThebundleS on anyquaternionicKählermanifoldM alwayshasinstantons
but not much is known about the moduli space.As in dimensionfour thereis
an elliptic complex [19] wherethe first cohomologygroup H’ is (or contains)
the tangentspaceat an irreducible instanton. But there are problemswith
vanishingtheoremsandwhetherH’ representsthe tangentspace.If M is one
of the GrassmanniansGr(2;Cm), Gr(4;fJ~m),thenH’ = 0 and the moduli
spaceshould be discrete.

3.5. ThegeneralizedDonaldsonmap

Motivatedby the resultsdiscussedin the precedingsubsection,we proceed
with the topologicalfield theoryon an almostquaternionicmanifold M under
the assumptionthat the correspondingmoduli spaceof irreducibleconnections
satisfyingthe Eq. (12) is afinite dimensionalsmoothmanifoldM and,for an
irreducibleconnectionV, the solution space

H2 = {x CI’(M,Q~M®adg) VaXab = 0} (16)

is zero. Note that Eq. (16) is preciselythe dynamicalequationfor the field
X from the topological field theory multiplet calculatedin the small coupling
constantapproximation (which is viable since the expectationvalues (A

1, A

A,, A ... A A,~)do not dependon a choiceof e at all).
Sincethe requirementof irreducibility implies the vanishingof the space

H
1 = {~ C f’(M,adg) I V~ = 0},

we concludethat pathintegrals (A,, A A,, A A A,~)are concentratedon the
superspace,X~,of all configurations(V, ~,ti,~, B,x~A, i~)satisfyingthe equations

(17)

y~(F)= 0, (18)

y+(V~)= 0, V*W = 0, (19)
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where * standsfor the Hodge operator *: Q’M —÷ Q4”’M associatedwith

the metric g. Note that such configurationsare Q-invariant, and the Eqs.
(19) coincide exactlywith equationsdescribinginfinitesimal deformationsof
solutionsto Eq. (18). Putanotherway, solutionsw of Eq. (18) describetangent
vectors (with assignedodd parity) to the moduli spaceM of instantons.Thus
the superspaceM is just the tangentspaceto M with fibres beingassignedodd
parity. Having madethis identification, we immediately recoverthe meaning
of the operatorQ—the formulaQAa = ~1/1a showsthat the operatorQ reduced
to the space of configurationssatisfying (l7)—(l9) is exactly the exterior
derivativeof M. Note alsothatdue to the oddcharacterof zeromodesof w a
generalfunction f (A,W) on the superspaceM canbe representedas a finite
series

f (a
1,w’) = f 1°](at) + f1

111 (a
1) ~ + + f~ (a1) w

1’ W~, (20)

where a, i = 1,2,..., n = dimM, is a local coordinate system on M.
Thus f can be interpretedas a collection {f101,f1l1,•~~,f[”]} of differen-
tial forms on the moduli spaceM. Let H be the parity changefunctor [15],
then the superspaceM = HTM has a distinguishedvolume form, vol =

da
1 . . da~dWt . . dyí’

1. Thus the quantityf~f vol is well-definedandis equal
to the usualintegralof the highestrankcomponentfl”] of f over the moduli
space

ffvol =ffk].

Note that lower rankcomponentsof f do not contributeto this integral.
Now let W be an arbitrary differential i-form on M not dependingon the

fields of the topological field theory. One easily checksthat the observable

fM A4k1A W is Q-closed,

QfA
4kIAW =fQA4kiAW = —fd(A4k~l AW) = 0.

Thereforethe functional

& =fA4kIAW

satisfiesthe requirementsneededfor constructingsmoothinvariants.
It is straightforwardto show that the recipe proposedby Witten [251 for

calculating the four-dimensionalDonaldson invariants survives in the 4k-
dimensionalalmost quaternionicframework. To calculate (JM A4k_, A w) one
proceedsas follows:
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(a) each time the connectionV appearsin the functional A4~_,(which, we
recall, is definedby the decomposition(10)), replaceit by the classical
instantonconfiguration;

(b) each time w appearsin A4k, replaceit by the expression~,u= ~ yi’ x

u(J)(x), where{u(~),...,u(0)} is a basis of the solutionspaceof Eqs. (19)
on the choseninstantonbackgroundand w-’ are the fermion zero mode
coordinatesthat appearin (20);

(c) each time~ appearsin A4k, replaceit by the solution (~)of the equation

V”Va(~) =

with w replacedby its zero modes.
Let us denoteby -

44k—i the result of such substitution.Then, accordingto
Witten’s arguments[25], we have

(IA
4~_IAW)=f~wvol~

where

~OJ=fA4kIAW. (21)

FromEqs. (10) and (21) it follows that cT~,is afunctionon the moduli space
M which is homogeneousof degree i in ci’. According to the decomposition
(20), this implies that ~, is a differential form on M of the samedegreeas
oi. Moreover, if w = da for some (i — 1)-form a then i~is zero, sincethe
functional

f ~ da = Q ((_l)tf A4k1+, A a

M M

is Q-exact. Thus the topological quantumfield theory on a 4k-manifold M
admitting an almost quaternionicstructuregivesa map

H1(M
4k,T~)_+Hl(M,I~) (22)

W ‘—*

from the de Rham cohomologyof M to the de Rham cohomologyof M. In
four dimensionsthis is the well-known Donaldsonmap [25,1 1].

It is clear that if the rank of w is not equal to the dimension of the
moduli space, the expectation value (&) is zero. To obtain a non-trivial
result, one should take a collection of non-zero cohomology classes,W, C

Hs, (M,D~),.. . ,W~ C H5s(M,]~),so that s~+ + s~= dimM. Then the
expectationvalue
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~

is an integral of a n-form on M. We stressonce more that the quantities
of the form (~. . . w,,) do not dependon the choiceof almost quaternionic
structureusedin calculationsandthusencodeonly smoothinformation.They
providea higher dimensionalgeneralizationof the four dimensionalDonaldson
invariants.

Concludingthis subsectionwe notethat thoughthe quantumfield theoryhas
not achievedyet the statusof a mathematicallyrigorousmodel,we succeededin
extractingfrom it a concreterecipefor calculatingthe imageof any cohomology
class [W] on M underthe Donaldson-likemap(22)—takeanyrepresentativeW
of a given cohomology class on M andcalculate the integral (21) resulting
in a differential form I~on M with the samedegreeas W. It is only in the
proof that the result is actually a closeddifferential form whose cohomology
class [‘b,,,] doesnot dependon a choiceof a particular representativeof [WI

thatquantumfield theory playsa rOle.

3.6. Thepartition function and thefirst invariant

Let M be a compactquaternionicKählermanifold andsupposethe moduli
spaceM of solutionsto (12) is discrete.Also assumethereare no zero-modes
of any other fields in the topological field theory multiplet (configurations
~
Q-invariant). In this casethe partition function,

Z = fvxe_5~

will in generalbe non-zero.The argumentsformally identicalto the onesused
by Witten give the following result

Z= ~ ±1,
instantons

which is asmoothinvariantof a4k-dimensionalmanifold underinvestigation.
It providesa higherdimensionalanalogueof the first Donaldsoninvariant.

4. Topological field theory on a hyperKähler manifold

4.1. HypercomplexandhyperKählerstructures

A hyperKahlerstructure [23,4] on a4k-dimensionalmanifoldM is a quater-
nionic Kähler structurewith the property that the canonicalconnection (13)
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is flat on the bundle ic’. This is the sameas saying that the holonomyof M
lies in Sp(k). Since the bundle SoS c EndTM over a hyperKählermani-
fold is globally trivial, it has now a global basis {I, J, K} of endomorphisms
satisfying relations (15). Moreover, the almost complexstructuresI, J and
K can be chosen to be horizontal relative to the canonical connection V.
The latter condition implies that theyare integrable.Therefore a hyperKähler
manifold is a particular exampleof a hypercomplexmanifold, which by defi-
nition is a manifold admitting threecomplexstructuresI, J and K such that
If = -JI = K.

4.2. The list of fields and the action of the topological field theory

Let M be a compact4k-dimensionalhyperKählermanifold. A topological
field theory on M is definedby the following set of structures
(a) a principle G-bundle,g —~ M, equippedwith a linear connectionV;
(b) the collectionof bosonicandfermionic fields on M listed in the following

table:

Bosonicfields Fermionicfields

q~CF(M,adc) yJCF(M,Q’Moadg)
A C r(M,A25®adc) 17 C [‘(M,A2S®adc)

BCF(M,A25®(S®S)®adg) XCF(M,A25®(S®S)®adg)

Note the difference between the topological field theory multiplet on a
hyperKãhlermanifold and the onesdiscussedin the precedingsections—the
fields A and ij are sectionsof the bundleA2S ® adc ratherthan adç.

Again we find it more economicalto describethe topological field theory in
a local coordinatechart { x” : a = 1,. . . , 4k } on M and local frames, { e’1
A = 1,... , 2k } and { eA : A = 1, 2 }, of the bundlesS and S respectively,
thoughof coursenothing dependson theseparticular choices.Moreover, this
time it is very convenientto usethe underlyingalmost quaternionicstructure

y~(eA®eA)=

to transformall fields of the multiplet into their “spinor” forms:

AA BB ~-, AA~—, AA
~ab = Ya Ya �ABEAb, Va = Ya VAA, Wa = Ya ~

— AA BBj

7’+ F
ab — Ya Ya ~ ABAB + AB~AB

wheree~AEis the componentof the symplecticform, and

~ .. F=F
ABAB [AB](AB)’ AB (AB)

are the two componentsof the curvaturetensor.
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As in 2.1 and 3.2, we next define the odd operatorQ acting in the field
theory function spaceaccordingto the formulae

QAAA = o,i’AA, Qyi~~= —VAA~, Qçb = 0,

QBABAB = i[çb,X~~~~],QXABAE = BABAE, QAAB =
21’7AB,

1r,.~ 1 AA 23
c!17AB = ~tV,/LABJ, Ya =

The squareof this operator,

Q2 =

is exactly the infinitesimal gaugetransformationc5,,~with the parameteri~,
andthus

c~2

!*? gauge invariantfunctionals=

Let usconsiderthe functional fM V~/d~dx4”with

‘~ T rl~AB!-7 C 1 ri. ~ABi 1 ABAB + ABAB= — ~ VACWB + ~17AB~Y,’~ J + ~ ABABX 2 ABABX

(24)

Since V is gaugeinvariant,we immediatelyconcludethat the action

S(y,V,~,A,B,W,17,X)=fLv1~dx4k, (25)

with the Lagrangian

L = QV

— T I ABAB j~’+ ABAB 1~-~ ~ C~AB— r~—g ABAB + ~‘ABAA — ~vACyvB

ri ABAB ~ C AB ~ ABAB
+1VAAWBBX + 1vACWB ~J ~‘VtXABA~,X

— ~icb[

17AB 17AB] — ~ (26)

is invariantundersupersymmetricQ-transformations(23).

4.3. Extendedsupersymmetry

In this subsectionwe investigatethe possibilityof extendedsupersymmetryin
the 4k-dimensionaltopologicalfield theory.The result is that in the casewhen
theunderlyingmanifoldM admitsa hyperKählerstructurethe topologicalfield
theory does indeed possessthree additional supersymmetrieswhich induce
threecomplexstructureson the associatedinstantonmoduli space.

Recall that thebundle~ c EndTM can be viewedas a coefficientbundle
of imaginary quaternionsacting on the tangentbundleat eachpoint as if by
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right multiplication. Let J be any global sectionof ~ 0 S. Let us define the
odd operator Q,, = JAB QAB acting in the function spaceof the topological
field theoryaccordingto the formulae

QJAAA = iJAJA~, QJWAA = J.BVA~ QJç5 = 0,

— rAB c~ 1 D rAB ci AA
‘~ZJ’~AB— ~1XABA1~J , ‘~J17AB = ~DABA1~J ‘ ~J?a =

QJBABA~ = Sym~~{Jc (i[~~xAB~]— 4QF~~)+ 2iJ~[~,17AB]}~

QJXABA~= Sym~~{J~ (—BABes + 4F~~)+ J~[~~17ABI}~ (27)

whereSym~~denotessymmetrisationover indicesA andE andthe symplectic

form ~ and its inverse,~AB

�AC� — VA

are used to raise and lower indices, ~BEJ~ = jB These transformation
laws areinspiredby the algebraicstructureof the extendedsupersymmetryin
N = 2 Yang—Mills theory [11].

Straightforwardbut tediouscalculationsshowthat for anyglobal sectionsJ
andK of 5 ® S the correspondingoperatorssatisfy the commutationrelations

QJQK + QKQJ = (J, K)ó,,~,,

QQJ + QJQ=0,

which imply

QJQK + QKQJ gaugeinvariant functionals= 0,

QQj + QjQ gaugeinvariant functionals= 0. (28)

Let us now consider a topological field theory on a quaternionicKähler
manifoldM with the action (25). Again it is straightforwardto prove that this
action is invariant under the supersymmetrytransformations(27) QjS = 0
if and only if the section J of ~ ® ~c’is horizontal relative to the canonical
connection(13). But the curvaturetensorR of M regardedas a self-adjoint

endomorphismof A2Q’M hasthe restriction [24]

R Ic®~ç=Aidç®~,

where A is a positive multiple of the scalar curvatureof M. Therefore,the
bundle ~ ® ~c’admits a global horizontal section if and only if the scalar
curvaturevanisheswhich implies the flatnessof ~c’® ~. If M is connected
this in turn implies that ~c’® ~c1is trivial andM is hyperKãhler.Thereforewe
concludethat the topological field theoryon a hyperKählermanifold possesses
threeadditional supersymmetriesQAB describedby transformationlaws (27).
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Under the assumptionsthat the moduli spaceM of irreducible instantons
on an almost quaternionic manifold is finite dimensional and the second
cohomology group (16) vanisheswe identified in 4.2 the supersymmetry
operator Q with the exterior derivative d of M. Now we see that under
the sameassumptions,for any complex structureJ on a hyperKãhlermanifold
Al thereexistcomplex conjugateoperators

q=~(Q+iQj), ~=~(Q—iQj),

which play the rOle of a and~Jin complexanalysis.Accordingto (28), they
satisfy commutationalgebra

q2=0, q20, qq+c~q=0,

andthusinduceacomplex structureon the moduli spaceM. This observation
clarifies the geometricmeaningof operatorsQj—they transferthe hypercom-
plex structurefrom a hyperKählermanifold M to the correspondingmoduli
spaceM—and providesa higher dimensionalgeneralizationof the result by
Galperin andOgievetsky [111 who also usedthe path integral techniquesto
show that the moduli spaceof instantonson a four-dimensionalhyperKähler
manifold hasan inducedhypercomplexstructure.

4.4. Newinvariantsof hypercomplexstructures

The Qj-invariance of the action (25) for horizontal sectionsJ of ~c’
becomestransparentwhenwe notethat the Lagrangian(26) on a hyperKähler
manifold canbe representedin the form

L = 1QQABQQCTr(AAAB) (29)

This representationplays a crucial rOle in our subsequentdiscussion,since it

implies, after integratingby parts as in Ref. [25], that the expectationvalue

(A) = fDxeS~A(X)

of any functional A vanishingunderan arbitrarycombinationof Q and QAE

is zero. In particular,
((cQ + CAEQ~)A) 0 (30)

for any parametersc, c’~andfunctional A.
Let us fix a complexstructureJ on a hyperKahlermanifoldM. Supposethat

we havefoundasetof differential forms Ar,s, r,s = 1,... ,2k, which havethe
type (r,s) relative to the chosencomplexstructureandsatisfythe equations

aAr,s = i~Ar,s+
1. (31)
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If Wr,s is an arbitrary8-closeddifferential (r, s)-form on M which doesnot
dependon fields of the topological field theory, then the observable

= f A2k_r,2ks A Wr,s

M

is a ~-closed functional on the function spaceof the topological field theory

~fA2kr,2ks A Wr,s = f qA2k~r,2~sA Wr,s

M M

= _f~(A2k_r,2k_s_iAW) = 0.

Thereforethe expectationvalue (~)for any 8-closed(r, s)-formon Al encodes
the informationonly of a fixed hypercomplexstructureon M and does not
dependon a choice of a particularhyperKählermetric usedin calculations.
Since this expectationvalue is also independentof the coupling constante,
one concludesthat to calculate(~)in the limit e —‘ 0 it is enough to know
the auxiliary functionalsAr,s, r,s = l,...,2k, only on the mass shell, when
the fields of the topological field theory multiplet satisfyclassical equationsof
motion.

We can constructa systemof functionals~ r,s = 1 2k satisfying(31)
on the massshell as follows. Let us decomposethe curvaturetwo-form F and
the fermionic 1-form ci’ into the sum

F = F
2’°+ F1” + F°’2, ~‘ = ~/J1~0+

of form of definite (r, s) type relativeto the chosencomplexstructureJ. Then,

since
F°’2= 0, F2’° = 0, V°”W°’1= 0, V1’0i,i’1’0 = 0

on the massshell, one finds that

(~+~)(~iF”—~”°+W°”+~)+ [A, ~iF”~”°+ V’°’1+~~]mass sheIl 0,

which implies

(~+ ~)Tr(~iF” — W”° + W°” + çb)m mass she11 0

for any positive integer m. Let us take m = 2k (or any m > 2k) and

decomposethe trace
2k 2k

Tr(~iF” — cu”°+ + ,~)2k= >~Ar,s
r=0 s=0
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into a sum of (r,s)-forms A,. In particular, A0 = Tr(q~
2”)and A2k,2k =

Tr(F” )2k

By construction,the collection of differential forms Ar,.,, r,s = 1,...,2k,
satisfiesthe requiredEqs. (31) on the massshell.

Now, as in 4.3, we have

(~)= (fA~r,~~_sA Wrs) = f ‘b~vol,

where

‘b~S fA
2kr,2k_sAWr,s (32)

and -
42k—r,2k--sare obtainedfrom the functionalsA2kr,2ksvia the following

substitutions:
(a) each time the connection V appearsin the functional A2kr,2k_., it ~S

replacedby the classicalinstantonconfiguration;
(b) each time w”° appearsin A2kr,2ks it is replacedby the expression

=

where{u~,.. . , u~} is a basisof the solution spaceof Eqs. (19) in the

classof complex-valuedone-forms of type (1,0) on the choseninstanton
background;

(c) eachtime w°’1appearsin A2kr2k~sit is replacedby the complexconjugate

expressionw°”= ~ ~ii’u~’~(x);
(d) eachtime ~ appearsin A2kr,2ks it is replacedby the solution (~)of the

equation

V”Va(~5)= ~[W’~,Wa1

with ci’ = W”°+ w°”replacedby its zeromodesas describedin items(b)
and(c).

From this prescriptionit follows that the map ‘br,~:Wr,s—p ‘b,~’ translatesa
hypercomplexstructureon Al to a hypercomplexstructureon the moduli space

M and its value cb~j’on any (r,s)-form Cd is a function on the moduli space
M which is homogeneousof degreer in W-’ andof degrees in ~ According
to the decomposition(20), this meansthat ‘b,~is a differential form on M of
the samebidegree(r, s) as w. Moreover, if w = ~a for some (r, s — 1)-form a
then ‘b,~is zero, since the functional

A ~a = ~ ~ )sfA
2k r2k s+1 A a)
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is ci-exact. Thus the topological quantum field theory on a 4k-manifold Al
admittinga hyperKahlerstructuregives the map

Hrs(M4k) Hr~S(M) (33)

from the Dolbeaultcohomologyon M to the Dolbeault cohomologyon M. In
the particularcasek = 1 this map has beenconstructedin Ref. [11].

Thuswe concludethatdespitethe fact that in theintermediateconsiderations
we useda mathematicallyill-defined functional integral, we arrived finally at
a very concreteand rigorous recipe for calculating hypercomplexstructure
invariants

(~l...Wp)=f’brslA...A’brPsP

associatedwith anycollectionof non-zeroDolbeaultcohomologyclasses,w
1 C

HrI,sl (M,lfl, ,W~,C H’i~~’P(M,IIt),so that r1 + + r,,, = S1 + + S,,, =

dimCM.
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